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COMMENT 

The Edwards model and the weakly self-avoiding walk 

Gregory F Lawlert 
Department of Mathematics, Duke University, Durham, NC 27706, USA 

Received 22 August 1989 

Abstract. It is commented that the fact that the Edwards model has paths of Hausdorff 
dimension two does not contradict the conjecture that the exponent for root mean square 
distance for random walks should equal the reciprocal of the dimension of the sample paths. 

The recent article of Koukiou, Pasche and  Petritis (1989) notes that the paths of the 
Edwards model in two dimensions have Hausdorff dimension two almost surely. This 
fact follows immediately from the fact that the Edwards model is absolutely continuous 
with respect to Wiener measure. It is then stated that this gives a counterexample to 
the conjecture that the ‘dimension’ d of paths is related to the root mean square 
distance exponent v by d = 1/ v. In the case of the weakly self-avoiding walk in two 
dimensions it is believed that v = 3/4. What we wish to note here is that this is not a 
counterexample to the conjecture if the conjecture is stated precisely. 

It will be necessary to define rigorously what is meant by the ‘dimension’ of paths. 
We will use Hausdorff dimension in the strict mathematical sense. Therefore in order 
to take the ‘dimension’ of lattice paths, we must first go to the continuum limit and  
then consider the Hausdorff paths of the limit process (strictly speaking, the Hausdorff 
dimension of any lattice random walk path before going to the continuum limit is 
one). Let A, be the set of nearest-neighbour random walks w ( j ) ,  O s  j s  n, of length 
n starting at  the origin in Zd. Suppose P, is a sequence of probability measures on 
A,. Let a, = a,(P,) be the root mean square displacement, a, = ( ( ~ w ( n ) ~ 2 ) p , , ) ” 2 .  The 
exponent v is defined by a, = n”. Let p., be the measure on C[O, 11, the continuous 
functions from [0,1] to Rd,  which assigns measure P , ( w )  to the function f( . )  where 

and  is defined by linear interpolation for other t E [0,1]. Then we say p. is a continuum 
limit of P, if there exists a subsequence n, + 00 with p.,, + p. weakly. We say the paths 
(or more precisely the sequence of measures P , j )  have dimension d if there exists a 
continuum limit of the P, which gives measure one to the set of paths of Hausdorff 
dimension d If P, is the uniform measure on A,, i.e. simple random walk, then 
a, =& and the only continuum limit is Brownian motion. 
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In defining the continuum limit for the weakly self-avoiding walk or the Edwards 
model one must consider two parameters: the interaction strength P and the step size 
n. The weakly self-avoiding random walk is achieved by choosing P,, in the following 
fashion: Let Z,,(w) be the number of self-intersections of the paths up through time n, 

z n ( w ) =  i i a ( w ( j ) - o ( k ) ) .  
j = O  k = O  

Let p > 0 and define 

We do not let p depend on n. If there exists n, +CO and p on C[O, 13 such that p,, + p 
weakly, then p is a continuum limit of the weakly self-avoiding walk. It is not known 
whether or not such a continuum limit exists. However, it is believed that a, = n 3 l 4 ,  
and it is quite possible that the paths of any continuum limit have Hausdorff 
dimension !. 

The Edwards model (Edwards 1965) is generally constructed by considering a 
sequence of measures defined on C[O, 11. Let B ( t )  be a Brownian motion and W the 
corresponding Wiener measure on C[O, 11.  We formally define the measure p by 

d p  = exp( - P J )  d W 

where J is the interaction 

J=Io1 IO' S(B(r ) -B(s) )dsd t .  

Rigorous sense can be made of this if d < 4  by approximating the delta function and 
taking weak limits (Varadhan 1969, Westwater 1980). This measure is not a continuum 
limit of weakly self-avoiding walks in the sense of the previous paragraph. To see this 
it is easiest to take a discrete approximation. Fix an integer n. When we approximate 
a Brownian motion by a random walk of length n, the step size is l l a ,  = n- ' ' 2 .  We 
therefore take as our approximate delta function, 

X E  R, 
otherwise &(x)  = 

where R,  = { (x l , .  . . , xd): Ix,I s + n - ' ' 2 } .  When we approximate the Brownian motion 
by the scaled random walk 

4) B n ( r ) = -  j if t = -  J;; n 

then the interaction J is approximated by 

J ,  = jO' IO' a , , [B , , ( s )  - B,,(t)l ds  d t  

= n - 2  j = O  k - O  f: 6 [ B n ( i ) - B n ( ! ) ]  
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For d < 4, this interaction is significantly weaker than the interaction of the weakly 
self-avoiding walk. We call the measure 

the discrete Edwards model. The terminology is reasonable since once can show that 
the continuum limit of the discrete Edwards model in two dimensions is the usual 
Edwards model; see e.g. Stoll (1985). The exponent for the root mean square distance 
of the discrete Edwards model should really be considered to be v = since the root 
mean square distance of paths under Qn is i. We see that this agrees with the conjecture. 

For d = 1, (Z,,)- cn3'*, so the discrete Edwards model gives a measure that is 
'absolutely continuous' with respect to Wiener measure. For d = 2. ( I , , )  - cn(1og n),  
so it is not immediately clear that the measure is absolutely continuous. However, the 
interaction is quite uniform on paths; essentially, Z,(w) = cn log n + nK,,(w) where K ,  
has bounded expectation and  variance. This allows for the renormalisation first given 
by Varadhan (1969). The interaction is highly non-trivial in d = 3 ;  however, it is 
expected that the weak limit of the discrete Edwards model will be the same as the 
process constructed by Westwater (1980). This process is singular with respect to 
Wiener measure, but again is not a continuum limit of weakly self-avoiding walks. 
The discrete Edwards model is the same as the weakiy self-avoiding walk in four 
dimensions, where it is believed that the only continuum limit is Brownian motion. 

We have discussed the above by writing p as a function of n. We can see a similar 
phenomenon if we write n as a function of p. In this case if n is of order p- '  (for 
d = 2 )  one gets behaviour like the Edwards model, while for n much larger than p- '  
one  gets behaviour like the weakly self-avoiding walk. In this sense the Edwards model 
and  the weakly self-avoiding walk can be considered as the same process viewed at 
different times. Another way of obtaining the weakly self-avoiding walk as a limit of 
the Edwards model is to start with the original (continuous) Edwards model, and let 
time become large. Let J r  be the interaction 

J T  = I,' IO'S[ B ( s )  - B( t ) ]  d s  d t  

and  let v T  be the measure on C[O, TI given by 

d v T  = exp(-pJ7)  d W T  

where W r  is the Wiener measure on C[O, TI. (Again we can define this precisely by 
taking approximate delta functions and weak limits.) Now define p T  to be the measure 
on C[O, 13 induced from scaling vT, i.e. let P T  be the measure generated from vj- and 

Then a weak limit of the measures p T  could well be a continuum limit for weak 
self-avoiding walks. It should be noted that if d = 2 paths have Hausdorff dimension 
two under the measures p T ,  but there is no reason to believe that they would have 
Hausdorff dimension two in a weak limit of these measures (Hausdorff dimension is 
not preserved under weak limits; e.g., simple random walk paths have Hausdorff 
dimension one while the continuum limit, Brownian motion, has paths of Hausdorff 
dimension two). 
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